Knowledge Base

Selected publications (ISI journals only) on “Urban Heat Island and Heat Waves” (1992-2021)

Abrar, R., Sarkar, S. K., Nishtha, K. T., Talukdar, S., Shahfahad, Rahman, A., Islam, A. R. M. T., & Mosavi, A. (2022). Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area. Sustainability, 14(9), 4945. https://doi.org/10.3390/su14094945

Alonso, L., & Renard, F. (2020). A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context. International Journal of Environmental Research and Public Health, 17(3), 1004. https://doi.org/10.3390/ijerph17031004

Alvarez, I., Quesada-Ganuza, L., Briz, E., & Garmendia, L. (2021). Urban Heat Islands and Thermal Comfort: A Case Study of Zorrotzaurre Island in Bilbao. Sustainability, 13(11), 6106. https://doi.org/10.3390/su13116106

Ambrosini, D., Galli, G., Mancini, B., Nardi, I., & Sfarra, S. (2014). Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met¼ Climate Model. Sustainability, 6(10), 7013–7029. https://doi.org/10.3390/su6107013

Amorim, M. C. de C. T. (2020). Daily evolution of urban heat islands in a Brazilian tropical continental climate during dry and rainy periods. Urban Climate, 34, 100715. https://doi.org/10.1016/j.uclim.2020.100715

An, N., Dou, J., González-Cruz, J. E., Bornstein, R. D., Miao, S., & Li, L. (2020). An Observational Case Study of Synergies between an Intense Heat Wave and the Urban Heat Island in Beijing. Journal of Applied Meteorology and Climatology, 59(4), 605–620. https://doi.org/10.1175/JAMC-D-19-0125.1

Ao, X., Wang, L., Zhi, X., Gu, W., Yang, H., & Li, D. (2019). Observed Synergies between Urban Heat Islands and Heat Waves and Their Controlling Factors in Shanghai, China. Journal of Applied Meteorology and Climatology, 58(9), 1955–1972. https://doi.org/10.1175/JAMC-D-19-0073.1

Arellano, B., & Roca, J. (2022). EFFECTS OF URBAN GREENERY ON HEALTH. A STUDY FROM REMOTE SENSING. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2022, 17–24. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-17-2022

Athukorala, D., & Murayama, Y. (2021). Urban Heat Island Formation in Greater Cairo: Spatio-Temporal Analysis of Daytime and Nighttime Land Surface Temperatures along the Urban–Rural Gradient. Remote Sensing, 13(7), 1396. https://doi.org/10.3390/rs13071396

Atif, S., Hussain, E., & Khan, J. (2020). Surface urban heat islands in the mega city of Karachi, their spatial distribution and health emergency response infrastructure. Journal of the Pakistan Medical Association, 0, 1. https://doi.org/10.5455/JPMA.5478

Baik, J.-J., Lim, H., Han, B.-S., & Jin, H.-G. (2022). Cool-roof effects on thermal and wind environments during heat waves: A case modeling study in Seoul, South Korea. Urban Climate, 41, 101044. https://doi.org/10.1016/j.uclim.2021.101044

Bañon. (2013). Spatial layout of forecasted extreme temperatures in the city of Murcia (Spain). Tethys, Journal of Weather and Climate of the Western Mediterranean. https://doi.org/10.3369/tethys.2013.10.01

Barbierato, E., Bernetti, I., Capecchi, I., & Saragosa, C. (2019). Quantifying the impact of trees on land surface temperature: A downscaling algorithm at city-scale. European Journal of Remote Sensing, 52(sup4), 74–83. https://doi.org/10.1080/22797254.2019.1646104

Basara, J. B., Basara, H. G., Illston, B. G., & Crawford, K. C. (2010). The Impact of the Urban Heat Island during an Intense Heat Wave in Oklahoma City. Advances in Meteorology, 2010, 1–10. https://doi.org/10.1155/2010/230365

Bassett, R., Young, P. J., Blair, G. S., Cai, X.-M., & Chapman, L. (2020). Urbanisation’s contribution to climate warming in Great Britain. Environmental Research Letters, 15(11), 114014. https://doi.org/10.1088/1748-9326/abbb51

Beckmann, S. K., Hiete, M., & Beck, C. (2021). Threshold temperatures for subjective heat stress in urban apartments—Analysing nocturnal bedroom temperatures during a heat wave in Germany. Climate Risk Management, 32, 100286. https://doi.org/10.1016/j.crm.2021.100286

Bernetti, I., Barbierato, E., Capecchi, I., & Saragosa, C. (2020). Climate change and urban well-being: A methodology based on Sen theory and imprecise probabilities. Aestimum, 57-80 Pages. https://doi.org/10.13128/AESTIM-8086

Biggart, M., Stocker, J., Doherty, R. M., Wild, O., Carruthers, D., Grimmond, S., Han, Y., Fu, P., & Kotthaus, S. (2021). Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale. Atmospheric Chemistry and Physics, 21(17), 13687–13711. https://doi.org/10.5194/acp-21-13687-2021

Bokwa, A., Geletič, J., Lehnert, M., Ćœuvela-Aloise, M., HollĂłsi, B., GĂĄl, T., Skarbit, N., DobrovolnĂœ, P., Hajto, M. J., Kielar, R., Walawender, J. P., Ć Ć„astnĂœ, P., Holec, J., Ostapowicz, K., BurianovĂĄ, J., & Garaj, M. (2019). Heat load assessment in Central European cities using an urban climate model and observational monitoring data. Energy and Buildings, 201, 53–69. https://doi.org/10.1016/j.enbuild.2019.07.023

Bosch, M., Locatelli, M., Hamel, P., Remme, R. P., Chenal, J., & Joost, S. (2021). A spatially explicit approach to simulate urban heat mitigation with InVEST (v3.8.0). Geoscientific Model Development, 14(6), 3521–3537. https://doi.org/10.5194/gmd-14-3521-2021

Bosch, M., Locatelli, M., Hamel, P., Remme, R. P., Jaligot, R., Chenal, J., & Joost, S. (n.d.). Evaluating urban greening scenarios for urban heat mitigation: A spatially explicit approach. 12.

Boudali Errebai, F., Strebel, D., Carmeliet, J., & Derome, D. (2022). Impact of urban heat island on cooling energy demand for residential building in Montreal using meteorological simulations and weather station observations. Energy and Buildings, 273, 112410. https://doi.org/10.1016/j.enbuild.2022.112410

Broadbent, A. M., Declet-Barreto, J., Krayenhoff, E. S., Harlan, S. L., & Georgescu, M. (2022). Targeted implementation of cool roofs for equitable urban adaptation to extreme heat. Science of The Total Environment, 811, 151326. https://doi.org/10.1016/j.scitotenv.2021.151326

Broadbent, A. M., Krayenhoff, E. S., & Georgescu, M. (2020). Efficacy of cool roofs at reducing pedestrian-level air temperature during projected 21st century heatwaves in Atlanta, Detroit, and Phoenix (USA). Environmental Research Letters, 15(8), 084007. https://doi.org/10.1088/1748-9326/ab6a23

Buchin, O., Hoelscher, M.-T., Meier, F., Nehls, T., & Ziegler, F. (2016). Evaluation of the health-risk reduction potential of countermeasures to urban heat islands. Energy and Buildings, 114, 27–37. https://doi.org/10.1016/j.enbuild.2015.06.038

Burger, M., Gubler, M., Heinimann, A., & Brönnimann, S. (2021). Modelling the spatial pattern of heatwaves in the city of Bern using a land use regression approach. Urban Climate, 38, 100885. https://doi.org/10.1016/j.uclim.2021.100885

Buscail, C., Upegui, E., & Viel, J.-F. (2012). Mapping heatwave health risk at the community level for public health action. International Journal of Health Geographics, 11(1), 38. https://doi.org/10.1186/1476-072X-11-38

Cao, J., Zhou, W., Wang, J., Hu, X., Yu, W., Zheng, Z., & Wang, W. (2021). Significant increase in extreme heat events along an urban–rural gradient. Landscape and Urban Planning, 215, 104210. https://doi.org/10.1016/j.landurbplan.2021.104210

Cao, M., Rosado, P., Lin, Z., Levinson, R., & Millstein, D. (2015). Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions. Environmental Science & Technology, 49(24), 14672–14679. https://doi.org/10.1021/acs.est.5b04886

Carvalho, D., Martins, H., Marta-Almeida, M., Rocha, A., & Borrego, C. (2017). Urban resilience to future urban heat waves under a climate change scenario: A case study for Porto urban area (Portugal). Urban Climate, 19, 1–27. https://doi.org/10.1016/j.uclim.2016.11.005

Chakraborty, T., Venter, Z. S., Qian, Y., & Lee, X. (2022). Lower Urban Humidity Moderates Outdoor Heat Stress. AGU Advances, 3(5). https://doi.org/10.1029/2022AV000729

Champiat, C. (2009). Identifier les Ăźlots de chaleur urbains pour rĂ©duire l’impact sanitaire des vagues de chaleur. Environnement, Risques & SantĂ©, 8(5), 399–411. https://doi.org/10.1684/ers.2009.0288

Chandra, S., Dubey, S. K., Sharma, D., Mitra, B. K., & Dasgupta, R. (2022). Investigation of Spatio–Temporal Changes in Land Use and Heat Stress Indices over Jaipur City Using Geospatial Techniques. Sustainability, 14(15), 9095. https://doi.org/10.3390/su14159095

Chang, Y., Xiao, J., Li, X., Frolking, S., Zhou, D., Schneider, A., Weng, Q., Yu, P., Wang, X., Li, X., Liu, S., & Wu, Y. (2021). Exploring diurnal cycles of surface urban heat island intensity in Boston with land surface temperature data derived from GOES-R geostationary satellites. Science of The Total Environment, 763, 144224. https://doi.org/10.1016/j.scitotenv.2020.144224

Chaston, T. B., Broome, R. A., Cooper, N., Duck, G., Geromboux, C., Guo, Y., Ji, F., Perkins-Kirkpatrick, S., Zhang, Y., Dissanayake, G. S., Morgan, G. G., & Hanigan, I. C. (2022). Mortality Burden of Heatwaves in Sydney, Australia Is Exacerbated by the Urban Heat Island and Climate Change: Can Tree Cover Help Mitigate the Health Impacts? Atmosphere, 13(5), 714. https://doi.org/10.3390/atmos13050714

Chen, D., Wang, X., Thatcher, M., Barnett, G., Kachenko, A., & Prince, R. (2014). Urban vegetation for reducing heat related mortality. Environmental Pollution, 192, 275–284. https://doi.org/10.1016/j.envpol.2014.05.002

Chen, F., Yang, X., & Zhu, W. (2014). WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmospheric Research, 138, 364–377. https://doi.org/10.1016/j.atmosres.2013.12.005

Chen, K., Newman, A. J., Huang, M., Coon, C., Darrow, L. A., Strickland, M. J., & Holmes, H. A. (2022). Estimating Heat‐Related Exposures and Urban Heat Island Impacts: A Case Study for the 2012 Chicago Heatwave. GeoHealth, 6(1). https://doi.org/10.1029/2021GH000535

Chen, L., Yu, B., Yang, F., & Mayer, H. (2016). Intra-urban differences of mean radiant temperature in different urban settings in Shanghai and implications for heat stress under heat waves: A GIS-based approach. Energy and Buildings, 130, 829–842. https://doi.org/10.1016/j.enbuild.2016.09.014

Chen, L., Zhang, M., & Wang, Y. (2016). Model analysis of urbanization impacts on boundary layer meteorology under hot weather conditions: A case study of Nanjing, China. Theoretical and Applied Climatology, 125(3–4), 713–728. https://doi.org/10.1007/s00704-015-1535-6

Chen, L., Zhang, M., Zhu, J., Wang, Y., & Skorokhod, A. (2018). Modeling Impacts of Urbanization and Urban Heat Island Mitigation on Boundary Layer Meteorology and Air Quality in Beijing Under Different Weather Conditions. Journal of Geophysical Research: Atmospheres, 123(8), 4323–4344. https://doi.org/10.1002/2017JD027501

Chen, Q., Ding, M., Yang, X., Hu, K., & Qi, J. (2018). Spatially explicit assessment of heat health risk by using multi-sensor remote sensing images and socioeconomic data in Yangtze River Delta, China. International Journal of Health Geographics, 17(1), 15. https://doi.org/10.1186/s12942-018-0135-y

Chen, Y., & Zhang, N. (2018). Urban Heat Island Mitigation Effectiveness under Extreme Heat Conditions in the Suzhou–Wuxi–Changzhou Metropolitan Area, China. Journal of Applied Meteorology and Climatology, 57(2), 235–253. https://doi.org/10.1175/JAMC-D-17-0101.1

Cheval, S., Dumitrescu, A., & Bell, A. (2009). The urban heat island of Bucharest during the extreme high temperatures of July 2007. Theoretical and Applied Climatology, 97(3–4), 391–401. https://doi.org/10.1007/s00704-008-0088-3

Chew, L. W., Liu, X., Li, X.-X., & Norford, L. K. (2021). Interaction between heat wave and urban heat island: A case study in a tropical coastal city, Singapore. Atmospheric Research, 247, 105134. https://doi.org/10.1016/j.atmosres.2020.105134

Colaninno, N., & Morello, E. (2019). Modelling the impact of green solutions upon the urban heat island phenomenon by means of satellite data. Journal of Physics: Conference Series, 1343(1), 012010. https://doi.org/10.1088/1742-6596/1343/1/012010

Conti, S., Meli, P., Minelli, G., Solimini, R., Toccaceli, V., Vichi, M., Beltrano, C., & Perini, L. (2005). Epidemiologic study of mortality during the Summer 2003 heat wave in Italy. Environmental Research, 98(3), 390–399. https://doi.org/10.1016/j.envres.2004.10.009

Cotlier, G. I., & Jimenez, J. C. (2022). The Extreme Heat Wave over Western North America in 2021: An Assessment by Means of Land Surface Temperature. Remote Sensing, 14(3), 561. https://doi.org/10.3390/rs14030561

Crețu, Ștefănel–Claudiu, Ichim, P., & SfĂźcă, L. (2020). SUMMER URBAN HEAT ISLAND OF GALAȚI CITY (ROMANIA) DETECTED USING SATELLITE PRODUCTS. Present Environment and Sustainable Development, 14(2), 5–27. https://doi.org/10.15551/pesd2020142001

Cugnon, G., Caluwaerts, S., DuchĂȘne, F., Hamdi, R., Termonia, P., Top, S., Vergauwen, T., & van, S. (2019). Climate sensitivity to land use changes over the city of Brussels. Geographica Pannonica, 23(4), 269–276. https://doi.org/10.5937/gp23-24214

Dandou, A., Papangelis, G., Kontos, ΀., Santamouris, M., & Tombrou, M. (2021). On the cooling potential of urban heating mitigation technologies in a coastal temperate city. Landscape and Urban Planning, 212, 104106. https://doi.org/10.1016/j.landurbplan.2021.104106

Daniel, M., Lemonsu, A., & ViguiĂ©, V. (2018). Role of watering practices in large-scale urban planning strategies to face the heat-wave risk in future climate. Urban Climate, 23, 287–308. https://doi.org/10.1016/j.uclim.2016.11.001

De Ridder, K., Maiheu, B., Lauwaet, D., Daglis, I., Keramitsoglou, I., Kourtidis, K., Manunta, P., & Paganini, M. (2016). Urban Heat Island Intensification during Hot Spells—The Case of Paris during the Summer of 2003. Urban Science, 1(1), 3. https://doi.org/10.3390/urbansci1010003

De Troeyer, K., Bauwelinck, M., Aerts, R., Profer, D., Berckmans, J., Delcloo, A., Hamdi, R., Van Schaeybroeck, B., Hooyberghs, H., Lauwaet, D., Demoury, C., & Van Nieuwenhuyse, A. (2020). Heat related mortality in the two largest Belgian urban areas: A time series analysis. Environmental Research, 188, 109848. https://doi.org/10.1016/j.envres.2020.109848

Delcloo, A. W., DuchĂȘne, F., Hamdi, R., Berckmans, J., Deckmyn, A., & Termonia, P. (2018). The Impact of Heat Waves and Urban Heat Island on the Production of Ozone Concentrations Under Present and Future Climate Conditions for the Belgian Domain. In C. Mensink & G. Kallos (Eds.), Air Pollution Modeling and its Application XXV (pp. 189–193). Springer International Publishing. https://doi.org/10.1007/978-3-319-57645-9_30

Dong, L., Mitra, C., Greer, S., & Burt, E. (2018). The Dynamical Linkage of Atmospheric Blocking to Drought, Heatwave and Urban Heat Island in Southeastern US: A Multi-Scale Case Study. Atmosphere, 9(1), 33. https://doi.org/10.3390/atmos9010033

Dong, W., Liu, Z., Zhang, L., Tang, Q., Liao, H., & Li, X. (2014). Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island. Sustainability, 6(10), 7334–7357. https://doi.org/10.3390/su6107334

Dousset, B., Gourmelon, F., Laaidi, K., Zeghnoun, A., Giraudet, E., Bretin, P., Mauri, E., & Vandentorren, S. (2011). Satellite monitoring of summer heat waves in the Paris metropolitan area. International Journal of Climatology, 31(2), 313–323. https://doi.org/10.1002/joc.2222

DuchÊne, F., Van Schaeybroeck, B., Caluwaerts, S., De Troch, R., Hamdi, R., & Termonia, P. (2020). A Statistical–Dynamical Methodology to Downscale Regional Climate Projections to Urban Scale. Journal of Applied Meteorology and Climatology, 59(6), 1109–1123. https://doi.org/10.1175/JAMC-D-19-0104.1

Echevarria Icaza, L., Van Der Hoeven, F., & Van Den Dobbelsteen, A. (2016). Surface thermal analysis of North Brabant cities and neighbourhoods during heat waves. Tema. Journal of Land Use, Mobility and Environment, 63-87 Paginazione. https://doi.org/10.6092/1970-9870/3741

Estoque, R. C., Ooba, M., Seposo, X. T., Togawa, T., Hijioka, Y., Takahashi, K., & Nakamura, S. (2020). Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nature Communications, 11(1), 1581. https://doi.org/10.1038/s41467-020-15218-8

Evola, G., Gagliano, A., Fichera, A., Marletta, L., Martinico, F., Nocera, F., & Pagano, A. (2017). UHI effects and strategies to improve outdoor thermal comfort in dense and old neighbourhoods. Energy Procedia, 134, 692–701. https://doi.org/10.1016/j.egypro.2017.09.589

Falasca, S., Ciancio, V., Salata, F., Golasi, I., Rosso, F., & Curci, G. (2019). High albedo materials to counteract heat waves in cities: An assessment of meteorology, buildings energy needs and pedestrian thermal comfort. Building and Environment, 163, 106242. https://doi.org/10.1016/j.buildenv.2019.106242

Fallmann, J., Forkel, R., & Emeis, S. (2016). Secondary effects of urban heat island mitigation measures on air quality. Atmospheric Environment, 125, 199–211. https://doi.org/10.1016/j.atmosenv.2015.10.094

Fenner, D., Holtmann, A., Krug, A., & Scherer, D. (2019). Heat waves in Berlin and Potsdam, Germany – Long‐term trends and comparison of heat wave definitions from 1893 to 2017. International Journal of Climatology, 39(4), 2422–2437. https://doi.org/10.1002/joc.5962

Fenner, D., Holtmann, A., Meier, F., Langer, I., & Scherer, D. (2019). Contrasting changes of urban heat island intensity during hot weather episodes. Environmental Research Letters, 14(12), 124013. https://doi.org/10.1088/1748-9326/ab506b

Fernández García, F., & Rasilla Álvarez, D. (2008). Olas de calor e influencia urbana en Madrid y su área metropolitana. Estudios Geográficos, LXIX(265), 495–518. https://doi.org/10.3989/estgeogr.0440

Fernandez Milan, B., & Creutzig, F. (2015). Reducing urban heat wave risk in the 21st century. Current Opinion in Environmental Sustainability, 14, 221–231. https://doi.org/10.1016/j.cosust.2015.08.002

Fischer, E. M., Oleson, K. W., & Lawrence, D. M. (2012). Contrasting urban and rural heat stress responses to climate change: HEAT STRESS RESPONSE TO CLIMATE CHANGE. Geophysical Research Letters, 39(3), n/a-n/a. https://doi.org/10.1029/2011GL050576

Foissard, X., Dubreuil, V., & Quénol, H. (2019). Defining scales of the land use effect to map the urban heat island in a mid-size European city: Rennes (France). Urban Climate, 29, 100490. https://doi.org/10.1016/j.uclim.2019.100490

Founda, D., Katavoutas, G., Pierros, F., & Mihalopoulos, N. (2022). The Extreme Heat Wave of Summer 2021 in Athens (Greece): Cumulative Heat and Exposure to Heat Stress. Sustainability, 14(13), 7766. https://doi.org/10.3390/su14137766

Founda, D., Pierros, F., Katavoutas, G., & Keramitsoglou, I. (2019). Observed Trends in Thermal Stress at European Cities with Different Background Climates. Atmosphere, 10(8), 436. https://doi.org/10.3390/atmos10080436

Founda, D., Pierros, F., Petrakis, M., & Zerefos, C. (2015). Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves. Atmospheric Research, 161–162, 1–13. https://doi.org/10.1016/j.atmosres.2015.03.016

Founda, D., & Santamouris, M. (2017). Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012). Scientific Reports, 7(1), 10973. https://doi.org/10.1038/s41598-017-11407-6

Galdies, C., & Lau, H. S. (2020). Urban Heat Island Effect, Extreme Temperatures and Climate Change: A Case Study of Hong Kong SAR. In W. Leal Filho, G. J. Nagy, M. Borga, P. D. ChĂĄvez Muñoz, & A. Magnuszewski (Eds.), Climate Change, Hazards and Adaptation Options (pp. 369–388). Springer International Publishing. https://doi.org/10.1007/978-3-030-37425-9_20

Gao, H., Luo, Y., Jiang, X., Zhang, D.-L., Chen, Y., Wang, Y., & Shen, X. (2021). A Statistical Analysis of Extreme Hot Characteristics and their Relationships with Urbanization in Southern China during 1971–2020. Journal of Applied Meteorology and Climatology. https://doi.org/10.1175/JAMC-D-21-0012.1

Gao, K., Santamouris, M., & Feng, J. (2020). On the cooling potential of irrigation to mitigate urban heat island. Science of The Total Environment, 740, 139754. https://doi.org/10.1016/j.scitotenv.2020.139754

Gao, Z., Hou, Y., & Chen, W. (2019). Enhanced sensitivity of the urban heat island effect to summer temperatures induced by urban expansion. Environmental Research Letters, 14(9), 094005. https://doi.org/10.1088/1748-9326/ab2740

Garbero, V., Milelli, M., Bucchignani, E., Mercogliano, P., Varentsov, M., Rozinkina, I., Rivin, G., Blinov, D., Wouters, H., Schulz, J.-P., SchÀttler, U., Bassani, F., Demuzere, M., & Repola, F. (2021). Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities. Atmosphere, 12(2), 237. https://doi.org/10.3390/atmos12020237

García, D. H. (2022). Analysis of Urban Heat Island and Heat Waves Using Sentinel-3 Images: A Study of Andalusian Cities in Spain. Earth Systems and Environment, 6(1), 199–219. https://doi.org/10.1007/s41748-021-00268-9

Geletič, J., Lehnert, M., & Jurek, M. (2020). Spatiotemporal variability of air temperature during a heat wave in real and modified landcover conditions: Prague and Brno (Czech Republic). Urban Climate, 31, 100588. https://doi.org/10.1016/j.uclim.2020.100588

Geletič, J., Lehnert, M., Savić, S., & Miloơević, D. (2018). Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Science of The Total Environment, 624, 385–395. https://doi.org/10.1016/j.scitotenv.2017.12.076

Ghobadi, A., Khosravi, M., & Tavousi, T. (2018). Surveying of Heat waves Impact on the Urban Heat Islands: Case study, the Karaj City in Iran. Urban Climate, 24, 600–615. https://doi.org/10.1016/j.uclim.2017.12.004

Giannaros, C., Nenes, A., Giannaros, T. M., Kourtidis, K., & Melas, D. (2018). A comprehensive approach for the simulation of the Urban Heat Island effect with the WRF/SLUCM modeling system: The case of Athens (Greece). Atmospheric Research, 201, 86–101. https://doi.org/10.1016/j.atmosres.2017.10.015

Glutting, J. P. (2013). Excess Heat-Related Mortality in Micro-Urban Heat Islands: A Case-only Study in Barcelona. GI_Forum 2013 – Creating the GISociety, 137–146. https://doi.org/10.1553/giscience2013s137

Gouda, K. C., Sahoo, S. K., Samantray, P., & Himesh, S. (2017). Simulation of extreme temperature over Odisha during May 2015. Weather and Climate Extremes, 17, 17–28. https://doi.org/10.1016/j.wace.2017.07.001

Graham, D., Vanos, J., Kenny, N., & Brown, R. (2017). Modeling the Effects of Urban Design on Emergency Medical Response Calls during Extreme Heat Events in Toronto, Canada. International Journal of Environmental Research and Public Health, 14(7), 778. https://doi.org/10.3390/ijerph14070778

Grossman-Clarke, S., Zehnder, J. A., Loridan, T., & Grimmond, C. S. B. (2010). Contribution of Land Use Changes to Near-Surface Air Temperatures during Recent Summer Extreme Heat Events in the Phoenix Metropolitan Area. Journal of Applied Meteorology and Climatology, 49(8), 1649–1664. https://doi.org/10.1175/2010JAMC2362.1

Guo, X., & Hendel, M. (2018). Urban water networks as an alternative source for district heating and emergency heat-wave cooling. Energy, 145, 79–87. https://doi.org/10.1016/j.energy.2017.12.108

Guo, X., Huang, G., Jia, P., & Wu, J. (2019). Estimating Fine-Scale Heat Vulnerability in Beijing Through Two Approaches: Spatial Patterns, Similarities, and Divergence. Remote Sensing, 11(20), 2358. https://doi.org/10.3390/rs11202358

Gutiérrez, E., Gonzålez, J. E., Bornstein, R., Arend, M., & Martilli, A. (2013). A New Modeling Approach to Forecast Building Energy Demands During Extreme Heat Events in Complex Cities. Journal of Solar Energy Engineering, 135(4), 040906. https://doi.org/10.1115/1.4025510

GutiĂ©rrez, E., GonzĂĄlez, J. E., Martilli, A., Bornstein, R., & Arend, M. (2015). Simulations of a Heat-Wave Event in New York City Using a Multilayer Urban Parameterization. Journal of Applied Meteorology and Climatology, 54(2), 283–301. https://doi.org/10.1175/JAMC-D-14-0028.1

Habeeb, D., Vargo, J., & Stone, B. (2015). Rising heat wave trends in large US cities. Natural Hazards, 76(3), 1651–1665. https://doi.org/10.1007/s11069-014-1563-z

Hamdi, R. (2010). Estimating Urban Heat Island Effects on the Temperature Series of Uccle (Brussels, Belgium) Using Remote Sensing Data and a Land Surface Scheme. Remote Sensing, 2(12), 2773–2784. https://doi.org/10.3390/rs2122773

Hamdi, R., DuchĂȘne, F., Berckmans, J., Delcloo, A., Vanpoucke, C., & Termonia, P. (2016). Evolution of urban heat wave intensity for the Brussels Capital Region in the ARPEGE-Climat A1B scenario. Urban Climate, 17, 176–195. https://doi.org/10.1016/j.uclim.2016.08.001

Han, Z. S., GonzĂĄlez-Cruz, J. E., Liu, H. N., Melecio-VĂĄzquez, D., Gamarro, H., Wu, Y. H., Moshary, F., & Bornstein, R. (2022). Observed sea breeze life cycle in and around NYC: Impacts on UHI and ozone patterns. Urban Climate, 42, 101109. https://doi.org/10.1016/j.uclim.2022.101109

Harlan, S. L., Declet-Barreto, J. H., Stefanov, W. L., & Petitti, D. B. (2013). Neighborhood Effects on Heat Deaths: Social and Environmental Predictors of Vulnerability in Maricopa County, Arizona. Environmental Health Perspectives, 121(2), 197–204. https://doi.org/10.1289/ehp.1104625

Hartz, D. A., Golden, J. S., Sister, C., Chuang, W.-C., & Brazel, A. J. (2012). Climate and heat-related emergencies in Chicago, Illinois (2003–2006). International Journal of Biometeorology, 56(1), 71–83. https://doi.org/10.1007/s00484-010-0398-x

Hattis, D., Ogneva-Himmelberger, Y., & Ratick, S. (2012). The spatial variability of heat-related mortality in Massachusetts. Applied Geography, 33, 45–52. https://doi.org/10.1016/j.apgeog.2011.07.008

Hatvani-Kovacs, G., Belusko, M., Pockett, J., & Boland, J. (2016). Assessment of Heatwave Impacts. Procedia Engineering, 169, 316–323. https://doi.org/10.1016/j.proeng.2016.10.039

He, B.-J., Wang, J., Liu, H., & Ulpiani, G. (2021). Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environmental Research, 193, 110584. https://doi.org/10.1016/j.envres.2020.110584

He, B.-J., Wang, J., Zhu, J., & Qi, J. (2022). Beating the urban heat: Situation, background, impacts and the way forward in China. Renewable and Sustainable Energy Reviews, 161, 112350. https://doi.org/10.1016/j.rser.2022.112350

He, X., Wang, J., Feng, J., Yan, Z., Miao, S., Zhang, Y., & Xia, J. (2020). Observational and modeling study of interactions between urban heat island and heatwave in Beijing. Journal of Cleaner Production, 247, 119169. https://doi.org/10.1016/j.jclepro.2019.119169

Heaviside, C., Cai, X. ‐M., & Vardoulakis, S. (2015). The effects of horizontal advection on the urban heat island in Birmingham and the West Midlands, United Kingdom during a heatwave. Quarterly Journal of the Royal Meteorological Society, 141(689), 1429–1441. https://doi.org/10.1002/qj.2452

Heaviside, C., Vardoulakis, S., & Cai, X.-M. (2016). Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environmental Health, 15(S1), S27. https://doi.org/10.1186/s12940-016-0100-9

Hendel, M., Bobée, C., Karam, G., Parison, S., Berthe, A., & Bordin, P. (2020). Developing a GIS tool for emergency urban cooling in case of heat-waves. Urban Climate, 33, 100646. https://doi.org/10.1016/j.uclim.2020.100646

Herbel, I., Croitoru, A.-E., Rus, A. V., RoƟca, C. F., Harpa, G. V., Ciupertea, A.-F., & Rus, I. (2018). The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania. Theoretical and Applied Climatology, 133(3–4), 681–695. https://doi.org/10.1007/s00704-017-2196-4

Hidalgo-García, D., & Arco-Díaz, J. (2022). Análisis de sinergias entre Isla de Calor Urbana y Olas de Calor mediante imágenes Sentinel 3 sobre la ciudad de Granada. Revista de Teledetección, 60, 1–15. https://doi.org/10.4995/raet.2022.17128

Hirsch, A. L., Evans, J. P., Thomas, C., Conroy, B., Hart, M. A., Lipson, M., & Ertler, W. (2021). Resolving the influence of local flows on urban heat amplification during heatwaves. Environmental Research Letters, 16(6), 064066. https://doi.org/10.1088/1748-9326/ac0377

Ho, H. C., Wai, K. M., He, M., Chan, T.-C., Deng, C., & Wong, M. S. (2020). Mortality risk of a future heat event across a subtropical city: Implications for community planning and health policy. Natural Hazards, 103(1), 623–637. https://doi.org/10.1007/s11069-020-04003-x

Holderness, T., Barr, S., Dawson, R., & Hall, J. (2013). An evaluation of thermal Earth observation for characterizing urban heatwave event dynamics using the urban heat island intensity metric. International Journal of Remote Sensing, 34(3), 864–884. https://doi.org/10.1080/01431161.2012.714505

Holec, J., Feranec, J., Ć Ć„astnĂœ, P., SzatmĂĄri, D., KopeckĂĄ, M., & Garaj, M. (2020). Evolution and assessment of urban heat island between the years 1998 and 2016: Case study of the cities Bratislava and Trnava in western Slovakia. Theoretical and Applied Climatology, 141(3–4), 979–997. https://doi.org/10.1007/s00704-020-03197-1

Holec, J., Ć veda, M., SzatmĂĄri, D., Feranec, J., BobĂĄÄŸovĂĄ, H., KopeckĂĄ, M., & Ć Ć„astnĂœ, P. (2021). Heat risk assessment based on mobile phone data: Case study of Bratislava, Slovakia. Natural Hazards, 108(3), 3099–3120. https://doi.org/10.1007/s11069-021-04816-4

Hong, J.-W., Hong, J., Kwon, E. E., & Yoon, D. K. (2019). Temporal dynamics of urban heat island correlated with the socio-economic development over the past half-century in Seoul, Korea. Environmental Pollution, 254, 112934. https://doi.org/10.1016/j.envpol.2019.07.102

Hu, L., Monaghan, A. J., & Brunsell, N. A. (2015). Investigation of Urban Air Temperature and Humidity Patterns during Extreme Heat Conditions Using Satellite-Derived Data. Journal of Applied Meteorology and Climatology, 54(11), 2245–2259. https://doi.org/10.1175/JAMC-D-15-0051.1

Hu, L., Wilhelmi, O. V., & Uejio, C. (2019). Assessment of heat exposure in cities: Combining the dynamics of temperature and population. Science of The Total Environment, 655, 1–12. https://doi.org/10.1016/j.scitotenv.2018.11.028

Hua, J., Zhang, X., Ren, C., Shi, Y., & Lee, T.-C. (2021). Spatiotemporal assessment of extreme heat risk for high-density cities: A case study of Hong Kong from 2006 to 2016. Sustainable Cities and Society, 64, 102507. https://doi.org/10.1016/j.scs.2020.102507

Huang, B., Ni, G., & Grimmond, C. S. B. (2019). Impacts of Urban Expansion on Relatively Smaller Surrounding Cities during Heat Waves. Atmosphere, 10(7), 364. https://doi.org/10.3390/atmos10070364

Huang, H., & Jie, P. (2022). Research on the Characteristics of High-Temperature Heat Waves and Outdoor Thermal Comfort: A Typical Space in Chongqing Yuzhong District as an Example. Buildings, 12(5), 625. https://doi.org/10.3390/buildings12050625

Imran, H. M., Kala, J., Ng, A. W. M., & Muthukumaran, S. (2018). Effectiveness of green and cool roofs in mitigating urban heat island effects during a heatwave event in the city of Melbourne in southeast Australia. Journal of Cleaner Production, 197, 393–405. https://doi.org/10.1016/j.jclepro.2018.06.179

Imran, H. M., Kala, J., Ng, A. W. M., & Muthukumaran, S. (2019a). Impacts of future urban expansion on urban heat island effects during heatwave events in the city of Melbourne in southeast Australia. Quarterly Journal of the Royal Meteorological Society, 145(723), 2586–2602. https://doi.org/10.1002/qj.3580

Imran, H. M., Kala, J., Ng, A. W. M., & Muthukumaran, S. (2019b). Effectiveness of vegetated patches as Green Infrastructure in mitigating Urban Heat Island effects during a heatwave event in the city of Melbourne. Weather and Climate Extremes, 25, 100217. https://doi.org/10.1016/j.wace.2019.100217

Jacobs, S. J., Gallant, A. J. E., Tapper, N. J., & Li, D. (2018). Use of Cool Roofs and Vegetation to Mitigate Urban Heat and Improve Human Thermal Stress in Melbourne, Australia. Journal of Applied Meteorology and Climatology, 57(8), 1747–1764. https://doi.org/10.1175/JAMC-D-17-0243.1

Jalalzadeh Fard, B., Mahmood, R., Hayes, M., Rowe, C., Abadi, A. M., Shulski, M., Medcalf, S., Lookadoo, R., & Bell, J. E. (2021). Mapping Heat Vulnerability Index Based on Different Urbanization Levels in Nebraska, USA. GeoHealth, 5(10). https://doi.org/10.1029/2021GH000478

Jamei, E., Ossen, D. R., Seyedmahmoudian, M., Sandanayake, M., Stojcevski, A., & Horan, B. (2020). Urban design parameters for heat mitigation in tropics. Renewable and Sustainable Energy Reviews, 134, 110362. https://doi.org/10.1016/j.rser.2020.110362

Jandaghian, Z., & Berardi, U. (n.d.). Proper Choice Of Urban Canopy Model For Climate Simulations. 3401–3405. https://doi.org/10.26868/25222708.2019.210574

Jandaghian, Z., & Berardi, U. (2020). Comparing urban canopy models for microclimate simulations in Weather Research and Forecasting Models. Sustainable Cities and Society, 55, 102025. https://doi.org/10.1016/j.scs.2020.102025

Jedlovec, G., Crane, D., & Quattrochi, D. (2017). Urban heat wave hazard and risk assessment. Results in Physics, 7, 4294–4295. https://doi.org/10.1016/j.rinp.2017.10.056

Jenkins, K., Hall, J., Glenis, V., Kilsby, C., McCarthy, M., Goodess, C., Smith, D., Malleson, N., & Birkin, M. (2014). Probabilistic spatial risk assessment of heat impacts and adaptations for London. Climatic Change, 124(1–2), 105–117. https://doi.org/10.1007/s10584-014-1105-4

Jeong, S., Millstein, D., & Levinson, R. (2021). Modeling potential air temperature reductions yielded by cool roofs and urban irrigation in the Kansas City Metropolitan Area. Urban Climate, 37, 100833. https://doi.org/10.1016/j.uclim.2021.100833

Jiang, S., Lee, X., Wang, J., & Wang, K. (2019). Amplified Urban Heat Islands during Heat Wave Periods. Journal of Geophysical Research: Atmospheres, 124(14), 7797–7812. https://doi.org/10.1029/2018JD030230

Jiménez-Gómez, I., & Martín-Sosa-Rodríguez, S. (2021). Cobertura en la prensa europea de la adaptación de las ciudades a las olas de calor y al cambio climåtico. Revista Mediterrånea de Comunicación, 12(1), 45. https://doi.org/10.14198/MEDCOM000024

Johnson, D. P. (2009). Geospatial Technologies for Surveillance of Heat Related Health Disasters. In J. D. Gatrell & R. R. Jensen (Eds.), Planning and Socioeconomic Applications (Vol. 1, pp. 139–154). Springer Netherlands. https://doi.org/10.1007/978-1-4020-9642-6_10

Johnson, D. P., & Wilson, J. S. (2009). The socio-spatial dynamics of extreme urban heat events: The case of heat-related deaths in Philadelphia. Applied Geography, 29(3), 419–434. https://doi.org/10.1016/j.apgeog.2008.11.004

Johnson, K., Depietri, Y., & Breil, M. (2016). Multi-hazard risk assessment of two Hong Kong districts. International Journal of Disaster Risk Reduction, 19, 311–323. https://doi.org/10.1016/j.ijdrr.2016.08.023

Jones, B., Tebaldi, C., O’Neill, B. C., Oleson, K., & Gao, J. (2018). Avoiding population exposure to heat-related extremes: Demographic change vs climate change. Climatic Change, 146(3–4), 423–437. https://doi.org/10.1007/s10584-017-2133-7

Kakkad, K., Barzaga, M. L., Wallenstein, S., Azhar, G. S., & Sheffield, P. E. (2014). Neonates in Ahmedabad, India, during the 2010 Heat Wave: A Climate Change Adaptation Study. Journal of Environmental and Public Health, 2014, 1–8. https://doi.org/10.1155/2014/946875

Kamal, N. I. A., Ash’aari, Z. H., Abdullah, A. M., Kusin, F. M., Mohamat Yusuff, F., Sharaai, A. H., Muharam, F. M., & Mohd Ariffin, N. A. (2022). Extreme heat vulnerability assessment in tropical region: A case study in Malaysia. Climate and Development, 14(5), 472–486. https://doi.org/10.1080/17565529.2021.1937030

Katavoutas, G., & Founda, D. (2019). Response of Urban Heat Stress to Heat Waves in Athens (1960–2017). Atmosphere, 10(9), 483. https://doi.org/10.3390/atmos10090483

Kaveckis, G., & Bechtel, B. (2014). Land Use Based Urban Vulnerability to Climate Change Assessment. The 9th International Conference “Environmental Engineering 2014.” The 9th International Conference “Environmental Engineering 2014,” Vilnius, Lithuania. https://doi.org/10.3846/enviro.2014.122

Keggenhoff, I., Elizbarashvili, M., & King, L. (2015). Heat Wave Events over Georgia Since 1961: Climatology, Changes and Severity. Climate, 3(2), 308–328. https://doi.org/10.3390/cli3020308

Keikhosravi, Q. (2019). The effect of heat waves on the intensification of the heat island of Iran’s metropolises (Tehran, Mashhad, Tabriz, Ahvaz). Urban Climate, 28, 100453. https://doi.org/10.1016/j.uclim.2019.100453

Keppas, S. Ch., Papadogiannaki, S., Parliari, D., Kontos, S., Poupkou, A., Tzoumaka, P., Kelessis, A., Zanis, P., Casasanta, G., de’Donato, F., Argentini, S., & Melas, D. (2021). Future Climate Change Impact on Urban Heat Island in Two Mediterranean Cities Based on High-Resolution Regional Climate Simulations. Atmosphere, 12(7), 884. https://doi.org/10.3390/atmos12070884

Keramitsoglou, I., Daglis, I. A., Amiridis, V., Chrysoulakis, N., Ceriola, G., Manunta, P., Maiheu, B., De Ridder, K., Lauwaet, D., & Paganini, M. (2012). Evaluation of satellite-derived products for the characterization of the urban thermal environment. Journal of Applied Remote Sensing, 6(1), 061704. https://doi.org/10.1117/1.JRS.6.061704

Keramitsoglou, I., Kiranoudis, C. T., & Sismanidis, P. (2016). Real-time appraisal of the spatially distributed heat related health risk and energy demand of cities (K. Themistocleous, D. G. Hadjimitsis, S. Michaelides, & G. Papadavid, Eds.; p. 968818). https://doi.org/10.1117/12.2240390

Keramitsoglou, I., Sismanidis, P., Analitis, A., Butler, T., Founda, D., Giannakopoulos, C., Giannatou, E., Karali, A., Katsouyanni, K., Kendrovski, V., Lemesios, G., Myrivili, E., Ordoñez, D., Varotsos, K. V., Vlastou, G., & Kiranoudis, C. T. (2017). Urban thermal risk reduction: Developing and implementing spatially explicit services for resilient cities. Sustainable Cities and Society, 34, 56–68. https://doi.org/10.1016/j.scs.2017.06.006

Kershaw, S. E., & Millward, A. A. (2012). A spatio-temporal index for heat vulnerability assessment. Environmental Monitoring and Assessment, 184(12), 7329–7342. https://doi.org/10.1007/s10661-011-2502-z

Khan, A., & Chatterjee, S. (2016). Numerical simulation of urban heat island intensity under urban–suburban surface and reference site in Kolkata, India. Modeling Earth Systems and Environment, 2(2), 71. https://doi.org/10.1007/s40808-016-0119-5

Khan, H. S., Paolini, R., Santamouris, M., & Caccetta, P. (2020). Exploring the Synergies between Urban Overheating and Heatwaves (HWs) in Western Sydney. Energies, 13(2), 470. https://doi.org/10.3390/en13020470

Khan, H. S., Santamouris, M., Kassomenos, P., Paolini, R., Caccetta, P., & Petrou, I. (2021). Spatiotemporal variation in urban overheating magnitude and its association with synoptic air-masses in a coastal city. Scientific Reports, 11(1), 6762. https://doi.org/10.1038/s41598-021-86089-2

Khan, H. S., Santamouris, M., Paolini, R., Caccetta, P., & Kassomenos, P. (2021). Analyzing the local and climatic conditions affecting the urban overheating magnitude during the Heatwaves (HWs) in a coastal city: A case study of the greater Sydney region. Science of The Total Environment, 755, 142515. https://doi.org/10.1016/j.scitotenv.2020.142515

Kim, S., & Ryu, Y. (2015). Describing the spatial patterns of heat vulnerability from urban design perspectives. International Journal of Sustainable Development & World Ecology, 22(3), 189–200. https://doi.org/10.1080/13504509.2014.1003202

Klok, E. J. (Lisette), & Kluck, J. (Jeroen). (2018). Reasons to adapt to urban heat (in the Netherlands). Urban Climate, 23, 342–351. https://doi.org/10.1016/j.uclim.2016.10.005

Klok, L., Zwart, S., Verhagen, H., & Mauri, E. (2012). The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resources, Conservation and Recycling, 64, 23–29. https://doi.org/10.1016/j.resconrec.2012.01.009

Kong, J., Zhao, Y., Carmeliet, J., & Lei, C. (2021). Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale. Sustainability, 13(19), 10923. https://doi.org/10.3390/su131910923

Koomen, E., & Diogo, V. (2017). Assessing potential future urban heat island patterns following climate scenarios, socio-economic developments and spatial planning strategies. Mitigation and Adaptation Strategies for Global Change, 22(2), 287–306. https://doi.org/10.1007/s11027-015-9646-z

Kotharkar, R., Ghosh, A., & Kotharkar, V. (2021). Estimating summertime heat stress in a tropical Indian city using Local Climate Zone (LCZ) framework. Urban Climate, 36, 100784. https://doi.org/10.1016/j.uclim.2021.100784

Krkoơka Lorencová, E., Whitham, C., Baơta, P., Harmáčková, Z., Ơtěpánek, P., Zahradníček, P., Farda, A., & Vačkáƙ, D. (2018). Participatory Climate Change Impact Assessment in Three Czech Cities: The Case of Heatwaves. Sustainability, 10(6), 1906. https://doi.org/10.3390/su10061906

Kubilay, A., Allegrini, J., Strebel, D., Zhao, Y., Derome, D., & Carmeliet, J. (2020). Advancement in Urban Climate Modelling at Local Scale: Urban Heat Island Mitigation and Building Cooling Demand. Atmosphere, 11(12), 1313. https://doi.org/10.3390/atmos11121313

Kubilay, A., Ferrari, A., Derome, D., & Carmeliet, J. (2021). Smart wetting of permeable pavements as an evaporative-cooling measure for improving the urban climate during heat waves. Journal of Building Physics, 45(1), 36–66. https://doi.org/10.1177/1744259120968586

Kumar, R., & Mishra, V. (2019). Decline in surface urban heat island intensity in India during heatwaves. Environmental Research Communications, 1(3), 031001. https://doi.org/10.1088/2515-7620/ab121d

Kunkel, K. E., Changnon, S. A., Reinke, B. C., & Arritt, R. W. (1996). The July 1995 Heat Wave in the Midwest: A Climatic Perspective and Critical Weather Factors. Bulletin of the American Meteorological Society, 77(7), 1507–1518. https://doi.org/10.1175/1520-0477(1996)077<1507:TJHWIT>2.0.CO;2

Kuras, E. R., Hondula, D. M., & Brown-Saracino, J. (2015). Heterogeneity in individually experienced temperatures (IETs) within an urban neighborhood: Insights from a new approach to measuring heat exposure. International Journal of Biometeorology, 59(10), 1363–1372. https://doi.org/10.1007/s00484-014-0946-x

Kusaka, H., Chen, F., Tewari, M., Dudhia, J., Gill, D. O., Duda, M. G., Wang, W., & Miya, Y. (2012). Numerical Simulation of Urban Heat Island Effect by the WRF Model with 4-km Grid Increment: An Inter-Comparison Study between the Urban Canopy Model and Slab Model. Journal of the Meteorological Society of Japan. Ser. II, 90B(0), 33–45. https://doi.org/10.2151/jmsj.2012-B03

Kwok, Y. T., Schoetter, R., de Munck, C., Lau, K. K.-L., Wong, M. S., & Ng, E. (2021). High-resolution mesoscale simulation of the microclimatic effects of urban development in the past, present, and future Hong Kong. Urban Climate, 37, 100850. https://doi.org/10.1016/j.uclim.2021.100850

Laaidi, K., Zeghnoun, A., Dousset, B., Bretin, P., Vandentorren, S., Giraudet, E., & Beaudeau, P. (2012). The Impact of Heat Islands on Mortality in Paris during the August 2003 Heat Wave. Environmental Health Perspectives, 120(2), 254–259. https://doi.org/10.1289/ehp.1103532

Larsen, L. (2015). Urban climate and adaptation strategies. Frontiers in Ecology and the Environment, 13(9), 486–492. https://doi.org/10.1890/150103

Lauwaet, D., De Ridder, K., Saeed, S., Brisson, E., Chatterjee, F., van Lipzig, N. P. M., Maiheu, B., & Hooyberghs, H. (2016). Assessing the current and future urban heat island of Brussels. Urban Climate, 15, 1–15. https://doi.org/10.1016/j.uclim.2015.11.008

Lemonsu, A., ViguiĂ©, V., Daniel, M., & Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate, 14, 586–605. https://doi.org/10.1016/j.uclim.2015.10.007

Li, D., & Bou-Zeid, E. (2013). Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts. Journal of Applied Meteorology and Climatology, 52(9), 2051–2064. https://doi.org/10.1175/JAMC-D-13-02.1

Li, D., Sun, T., Liu, M., Wang, L., & Gao, Z. (2016). Changes in Wind Speed under Heat Waves Enhance Urban Heat Islands in the Beijing Metropolitan Area. Journal of Applied Meteorology and Climatology, 55(11), 2369–2375. https://doi.org/10.1175/JAMC-D-16-0102.1

Li, D., Sun, T., Liu, M., Yang, L., Wang, L., & Gao, Z. (2015). Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environmental Research Letters, 10(5), 054009. https://doi.org/10.1088/1748-9326/10/5/054009

Li, G., Zhang, X., Mirzaei, P. A., Zhang, J., & Zhao, Z. (2018). Urban heat island effect of a typical valley city in China: Responds to the global warming and rapid urbanization. Sustainable Cities and Society, 38, 736–745. https://doi.org/10.1016/j.scs.2018.01.033

Li, K., Chen, Y., & Gao, S. (2021). Comparative Analysis of Variations and Patterns between Surface Urban Heat Island Intensity and Frequency across 305 Chinese Cities. Remote Sensing, 13(17), 3505. https://doi.org/10.3390/rs13173505

Li, L., Zha, Y., & Wang, R. (2020). Relationship of surface urban heat island with air temperature and precipitation in global large cities. Ecological Indicators, 117, 106683. https://doi.org/10.1016/j.ecolind.2020.106683

Li, Y., Schubert, S., Kropp, J. P., & Rybski, D. (2020). On the influence of density and morphology on the Urban Heat Island intensity. Nature Communications, 11(1), 2647. https://doi.org/10.1038/s41467-020-16461-9

Liao, W., Liu, X., Li, D., Luo, M., Wang, D., Wang, S., Baldwin, J., Lin, L., Li, X., Feng, K., Hubacek, K., & Yang, X. (2018). Stronger Contributions of Urbanization to Heat Wave Trends in Wet Climates. Geophysical Research Letters, 45(20). https://doi.org/10.1029/2018GL079679

Liu, G., Zhang, L., He, B., Jin, X., Zhang, Q., Razafindrabe, B., & You, H. (2015). Temporal changes in extreme high temperature, heat waves and relevant disasters in Nanjing metropolitan region, China. Natural Hazards, 76(2), 1415–1430. https://doi.org/10.1007/s11069-014-1556-y

Liu, X., Tian, G., Feng, J., Ma, B., Wang, J., & Kong, L. (2018). Modeling the Warming Impact of Urban Land Expansion on Hot Weather Using the Weather Research and Forecasting Model: A Case Study of Beijing, China. Advances in Atmospheric Sciences, 35(6), 723–736. https://doi.org/10.1007/s00376-017-7137-8

Lobaccaro, G., De Ridder, K., Acero, J. A., Hooyberghs, H., Lauwaet, D., Maiheu, B., Sharma, R., & Govehovitch, B. (2021). Applications of Models and Tools for Mesoscale and Microscale Thermal Analysis in Mid-Latitude Climate Regions—A Review. Sustainability, 13(22), 12385. https://doi.org/10.3390/su132212385

Loughner, C. P., Allen, D. J., Zhang, D.-L., Pickering, K. E., Dickerson, R. R., & Landry, L. (2012). Roles of Urban Tree Canopy and Buildings in Urban Heat Island Effects: Parameterization and Preliminary Results. Journal of Applied Meteorology and Climatology, 51(10), 1775–1793. https://doi.org/10.1175/JAMC-D-11-0228.1

Ma, H., Shao, H., & Song, J. (2014). Modeling the relative roles of the foehn wind and urban expansion in the 2002 Beijing heat wave and possible mitigation by high reflective roofs. Meteorology and Atmospheric Physics, 123(3–4), 105–114. https://doi.org/10.1007/s00703-013-0289-x

Ma, H.-Y., Li, H.-J., Zhang, M., & Dong, X. (2022). Impact of cropland degradation in the rural–urban fringe on urban heat island and heat stress during summer heat waves in the Yangtze River Delta. Advances in Climate Change Research, 13(2), 240–250. https://doi.org/10.1016/j.accre.2022.01.006

Macintyre, H. L., Heaviside, C., Taylor, J., Picetti, R., Symonds, P., Cai, X.-M., & Vardoulakis, S. (2018). Assessing urban population vulnerability and environmental risks across an urban area during heatwaves – Implications for health protection. Science of The Total Environment, 610–611, 678–690. https://doi.org/10.1016/j.scitotenv.2017.08.062

Marcel, C., & Villot, J. (2021). Urban Heat Island index based on a simplified micro scale model. Urban Climate, 39, 100922. https://doi.org/10.1016/j.uclim.2021.100922

Marcotullio, P. J., Keßler, C., & Fekete, B. M. (2021). The future urban heat-wave challenge in Africa: Exploratory analysis. Global Environmental Change, 66, 102190. https://doi.org/10.1016/j.gloenvcha.2020.102190

Marx, W., Haunschild, R., & Bornmann, L. (2021). Heat waves: A hot topic in climate change research. Theoretical and Applied Climatology, 146(1–2), 781–800. https://doi.org/10.1007/s00704-021-03758-y

Matzarakis, A., Laschewski, G., & Muthers, S. (2020). The Heat Health Warning System in Germany—Application and Warnings for 2005 to 2019. Atmosphere, 11(2), 170. https://doi.org/10.3390/atmos11020170

Meir, T., Orton, P. M., Pullen, J., Holt, T., Thompson, W. T., & Arend, M. F. (2013). Forecasting the New York City Urban Heat Island and Sea Breeze during Extreme Heat Events. Weather and Forecasting, 28(6), 1460–1477. https://doi.org/10.1175/WAF-D-13-00012.1

Miao, S., Zhan, W., Lai, J., Li, L., Du, H., Wang, C., Wang, C., Li, J., Huang, F., Liu, Z., & Dong, P. (2022). Heat wave-induced augmentation of surface urban heat islands strongly regulated by rural background. Sustainable Cities and Society, 82, 103874. https://doi.org/10.1016/j.scs.2022.103874

MiloĆĄević, D., Savić, S., Kresoja, M., LuĆŸanin, Z., Ć ećerov, I., Arsenović, D., Dunjić, J., & Matzarakis, A. (2022). Analysis of air temperature dynamics in the “local climate zones” of Novi Sad (Serbia) based on long-term database from an urban meteorological network. International Journal of Biometeorology, 66(2), 371–384. https://doi.org/10.1007/s00484-020-02058-w

Mohamed, M., Othman, A., Abotalib, A. Z., & Majrashi, A. (2021). Urban Heat Island Effects on Megacities in Desert Environments Using Spatial Network Analysis and Remote Sensing Data: A Case Study from Western Saudi Arabia. Remote Sensing, 13(10), 1941. https://doi.org/10.3390/rs13101941

Mohammad Harmay, N. S., & Choi, M. (2022). Effects of heat waves on urban warming across different urban morphologies and climate zones. Building and Environment, 209, 108677. https://doi.org/10.1016/j.buildenv.2021.108677

MolnĂĄr, G., Gyöngyösi, A. Z., & GĂĄl, T. (2019a). Modeling of urban heat island using adjusted static database. IdƑjĂĄrĂĄs, 123(3), 371–390. https://doi.org/10.28974/idojaras.2019.3.7

MolnĂĄr, G., Gyöngyösi, A. Z., & GĂĄl, T. (2019b). Integration of an LCZ-based classification into WRF to assess the intra-urban temperature pattern under a heatwave period in Szeged, Hungary. Theoretical and Applied Climatology, 138(1–2), 1139–1158. https://doi.org/10.1007/s00704-019-02881-1

Montávez, J. P., González-Rouco, J. F., & Valero, F. (2008). A simple model for estimating the maximum intensity of nocturnal urban heat Island. International Journal of Climatology, 28(2), 235–242. https://doi.org/10.1002/joc.1526

Morakinyo, T. E., Ren, C., Shi, Y., Lau, K. K.-L., Tong, H.-W., Choy, C.-W., & Ng, E. (2019). Estimates of the impact of extreme heat events on cooling energy demand in Hong Kong. Renewable Energy, 142, 73–84. https://doi.org/10.1016/j.renene.2019.04.077

Murakami, D., Peters, G. W., Matsui, T., & Yamagata, Y. (2021). Spatio-Temporal Analysis of Urban Heatwaves Using Tukey g-and-h Random Field Models. IEEE Access, 9, 79869–79888. https://doi.org/10.1109/ACCESS.2020.3013255

Mushore, T. D. (n.d.). Determining extreme heat vulnerability of Harare Metropolitan City using multispectral remote sensing and socio-economic data. 20.

Mussetti, G., Brunner, D., Henne, S., Allegrini, J., Krayenhoff, E. S., Schubert, S., Feigenwinter, C., Vogt, R., Wicki, A., & Carmeliet, J. (2020). COSMO-BEP-Tree v1.0: A coupled urban climate model with explicit representation of street trees. Geoscientific Model Development, 13(3), 1685–1710. https://doi.org/10.5194/gmd-13-1685-2020

Ngarambe, J., Nganyiyimana, J., Kim, I., Santamouris, M., & Yun, G. Y. (2020). Synergies between urban heat island and heat waves in Seoul: The role of wind speed and land use characteristics. PLOS ONE, 15(12), e0243571. https://doi.org/10.1371/journal.pone.0243571

Nicholson, A. (2020). Analysis of the diurnal cycle of air temperature between rural Berkshire and the University of Reading: Possible role of the urban heat island. Weather, 75(8), 235–241. https://doi.org/10.1002/wea.3807

Oleson, K. W., Anderson, G. B., Jones, B., McGinnis, S. A., & Sanderson, B. (2018). Avoided climate impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5. Climatic Change, 146(3–4), 377–392. https://doi.org/10.1007/s10584-015-1504-1

Oliveira, A., Lopes, A., Correia, E., Niza, S., & Soares, A. (2021a). Heatwaves and Summer Urban Heat Islands: A Daily Cycle Approach to Unveil the Urban Thermal Signal Changes in Lisbon, Portugal. Atmosphere, 12(3), 292. https://doi.org/10.3390/atmos12030292

Oliveira, A., Lopes, A., Correia, E., Niza, S., & Soares, A. (2021b). An urban climate-based empirical model to predict present and future patterns of the Urban Thermal Signal. Science of The Total Environment, 790, 147710. https://doi.org/10.1016/j.scitotenv.2021.147710

Oliveira, A., Lopes, A., & Niza, S. (2020). Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data. Urban Climate, 33, 100631. https://doi.org/10.1016/j.uclim.2020.100631

Oliveira, A., Lopes, A., Niza, S., & Soares, A. (2022). An urban energy balance-guided machine learning approach for synthetic nocturnal surface Urban Heat Island prediction: A heatwave event in Naples. Science of The Total Environment, 805, 150130. https://doi.org/10.1016/j.scitotenv.2021.150130

Ortiz, L. E., González, J. E., Horton, R., Lin, W., Wu, W., Ramamurthy, P., Arend, M., & Bornstein, R. D. (2019). High‐resolution projections of extreme heat in New York City. International Journal of Climatology, 39(12), 4721–4735. https://doi.org/10.1002/joc.6102

Pace, R., Chiocchini, F., Sarti, M., Endreny, T. A., Calfapietra, C., & Ciolfi, M. (2022). Integrating Copernicus land cover data into the i-Tree Cool Air model to evaluate and map urban heat mitigation by tree cover. European Journal of Remote Sensing, 1–18. https://doi.org/10.1080/22797254.2022.2125833

Palinkas, L. A., Hurlburt, M. S., Fernandez, C., De Leon, J., Yu, K., Salinas, E., Garcia, E., Johnston, J., Rahman, Md. M., Silva, S. J., & McConnell, R. S. (2022). Vulnerable, Resilient, or Both? A Qualitative Study of Adaptation Resources and Behaviors to Heat Waves and Health Outcomes of Low-Income Residents of Urban Heat Islands. International Journal of Environmental Research and Public Health, 19(17), 11090. https://doi.org/10.3390/ijerph191711090

Pantavou, K., Theoharatos, G., Mavrakis, A., & Santamouris, M. (2011). Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. Building and Environment, 46(2), 339–344. https://doi.org/10.1016/j.buildenv.2010.07.026

Papanastasiou, D. K., Melas, D., & Kambezidis, H. D. (2015). Air quality and thermal comfort levels under extreme hot weather. Atmospheric Research, 152, 4–13. https://doi.org/10.1016/j.atmosres.2014.06.002

Paranunzio, R., Dwyer, E., Fitton, J. M., Alexander, P. J., & O’Dwyer, B. (2021). Assessing current and future heat risk in Dublin city, Ireland. Urban Climate, 40, 100983. https://doi.org/10.1016/j.uclim.2021.100983

Paravantis, J., Santamouris, M., Cartalis, C., Efthymiou, C., & Kontoulis, N. (2017). Mortality Associated with High Ambient Temperatures, Heatwaves, and the Urban Heat Island in Athens, Greece. Sustainability, 9(4), 606. https://doi.org/10.3390/su9040606

Parison, S., Hendel, M., Grados, A., & Royon, L. (2020). Analysis of the heat budget of standard, cool and watered pavements under lab heat-wave conditions. Energy and Buildings, 228, 110455. https://doi.org/10.1016/j.enbuild.2020.110455

Park, M.-S., Byon, J.-Y., Kim, B.-J., Choi, W., Myung, K.-M., Lee, S.-H., Cho, T.-I., Chae, J.-H., Min, J.-S., Kang, M., Jee, J.-B., Kim, S.-H., & Cho, C.-R. (2020). A Building-Block Urban Meteorological Observation Experiment (BBMEX) Campaign in Central Commercial Area in Seoul. Atmosphere, 11(3), 299. https://doi.org/10.3390/atmos11030299

Pascal, M., Goria, S., Wagner, V., Sabastia, M., Guillet, A., Cordeau, E., Mauclair, C., & Host, S. (2021). Greening is a promising but likely insufficient adaptation strategy to limit the health impacts of extreme heat. Environment International, 151, 106441. https://doi.org/10.1016/j.envint.2021.106441

Pioppi, B., Pigliautile, I., & Pisello, A. L. (2020). Data collected by coupling fix and wearable sensors for addressing urban microclimate variability in an historical Italian city. Data in Brief, 29, 105322. https://doi.org/10.1016/j.dib.2020.105322

Pokhrel, R., Ortiz, L. E., RamĂ­rez-Beltran, N. D., & GonzĂĄlez, J. E. (2019). On the Climate Variability and Energy Demands for Indoor Human Comfort Levels in a Tropical-Coastal Urban Environment. Journal of Solar Energy Engineering, 141(3), 031002. https://doi.org/10.1115/1.4041401

PóƂrolniczak, M., Tomczyk, A., & Kolendowicz, L. (2018). Thermal Conditions in the City of PoznaƄ (Poland) during Selected Heat Waves. Atmosphere, 9(1), 11. https://doi.org/10.3390/atmos9010011

Prosdocimi, D., & Klima, K. (2020). Health effects of heat vulnerability in Rio de Janeiro: A validation model for policy applications. SN Applied Sciences, 2(12), 1948. https://doi.org/10.1007/s42452-020-03750-7

Pyrgou, A., Castaldo, V. L., Pisello, A. L., Cotana, F., & Santamouris, M. (2017). On the effect of summer heatwaves and urban overheating on building thermal-energy performance in central Italy. Sustainable Cities and Society, 28, 187–200. https://doi.org/10.1016/j.scs.2016.09.012

Pyrgou, A., Hadjinicolaou, P., & Santamouris, M. (2020). Urban-rural moisture contrast: Regulator of the urban heat island and heatwaves’ synergy over a mediterranean city. Environmental Research, 182, 109102. https://doi.org/10.1016/j.envres.2019.109102

Pyrgou, A., & Santamouris, M. (2018). Increasing Probability of Heat-Related Mortality in a Mediterranean City Due to Urban Warming. International Journal of Environmental Research and Public Health, 15(8), 1571. https://doi.org/10.3390/ijerph15081571

Rajput, M., Augenbroe, G., Stone, B., Georgescu, M., Broadbent, A., Krayenhoff, S., & Mallen, E. (2022). Heat exposure during a power outage: A simulation study of residences across the metro Phoenix area. Energy and Buildings, 259, 111605. https://doi.org/10.1016/j.enbuild.2021.111605

Ramamurthy, P., & Bou-Zeid, E. (2017). Heatwaves and urban heat islands: A comparative analysis of multiple cities: Heatwaves and Urban Heat Islands. Journal of Geophysical Research: Atmospheres, 122(1), 168–178. https://doi.org/10.1002/2016JD025357

Ramamurthy, P., GonzĂĄlez, J., Ortiz, L., Arend, M., & Moshary, F. (2017). Impact of heatwave on a megacity: An observational analysis of New York City during July 2016. Environmental Research Letters, 12(5), 054011. https://doi.org/10.1088/1748-9326/aa6e59

Ramamurthy, P., Li, D., & Bou-Zeid, E. (2017). High-resolution simulation of heatwave events in New York City. Theoretical and Applied Climatology, 128(1–2), 89–102. https://doi.org/10.1007/s00704-015-1703-8

Ramamurthy, P., & Sangobanwo, M. (2016). Inter-annual variability in urban heat island intensity over 10 major cities in the United States. Sustainable Cities and Society, 26, 65–75. https://doi.org/10.1016/j.scs.2016.05.012

Rasilla, D., Allende, F., Martilli, A., & FernĂĄndez, F. (2019). Heat Waves and Human Well-Being in Madrid (Spain). Atmosphere, 10(5), 288. https://doi.org/10.3390/atmos10050288

Reed, K., & Sun, F. (2022). Investigating the potential for cool roofs to mitigate urban heat in the Kansas City metropolitan area. Climate Dynamics. https://doi.org/10.1007/s00382-022-06296-z

Ren, C., Wang, K., Shi, Y., Kwok, Y. T., Morakinyo, T. E., Lee, T., & Li, Y. (2021). Investigating the urban heat and cool island effects during extreme heat events in high‐density cities: A case study of Hong Kong from 2000 to 2018. International Journal of Climatology, 41(15), 6736–6754. https://doi.org/10.1002/joc.7222

Richard, Y., Pohl, B., Rega, M., Pergaud, J., Thevenin, T., Emery, J., Dudek, J., Vairet, T., Zito, S., & Chateau-Smith, C. (2021). Is Urban Heat Island intensity higher during hot spells and heat waves (Dijon, France, 2014–2019)? Urban Climate, 35, 100747. https://doi.org/10.1016/j.uclim.2020.100747

Rizvi, S. H., Alam, K., & Iqbal, M. J. (2019). Spatio -temporal variations in urban heat island and its interaction with heat wave. Journal of Atmospheric and Solar-Terrestrial Physics, 185, 50–57. https://doi.org/10.1016/j.jastp.2019.02.001

RĂžd, J. K., & Maarse, M. J. (2021). Using Citizen Sensing to Identify Heat-Exposed Neighbourhoods. Urban Science, 5(1), 14. https://doi.org/10.3390/urbansci5010014

Rogers, C. D. W., Gallant, A. J. E., & Tapper, N. J. (2019). Is the urban heat island exacerbated during heatwaves in southern Australian cities? Theoretical and Applied Climatology, 137(1–2), 441–457. https://doi.org/10.1007/s00704-018-2599-x

Rosenzweig, C., Solecki, W. D., Parshall, L., Lynn, B., Cox, J., Goldberg, R., Hodges, S., Gaffin, S., Slosberg, R. B., Savio, P., Dunstan, F., & Watson, M. (2009). Mitigating New York City’s Heat Island: Integrating Stakeholder Perspectives and Scientific Evaluation. Bulletin of the American Meteorological Society, 90(9), 1297–1312. https://doi.org/10.1175/2009BAMS2308.1

Ruddell, D., Hoffman, D., Ahmad, O., & Brazel, A. (2013). Historical threshold temperatures for Phoenix (urban) and Gila Bend (desert), central Arizona, USA. Climate Research, 55(3), 201–215. https://doi.org/10.3354/cr01130

Ruddell, D. M., Harlan, S. L., Grossman-Clarke, S., & Buyantuyev, A. (2009). Risk and Exposure to Extreme Heat in Microclimates of Phoenix, AZ. In P. S. Showalter & Y. Lu (Eds.), Geospatial Techniques in Urban Hazard and Disaster Analysis (pp. 179–202). Springer Netherlands. https://doi.org/10.1007/978-90-481-2238-7_9

Ruuhela, R., Votsis, A., Kukkonen, J., JylhÀ, K., KankaanpÀÀ, S., & Perrels, A. (2020). Temperature-Related Mortality in Helsinki Compared to Its Surrounding Region Over Two Decades, with Special Emphasis on Intensive Heatwaves. Atmosphere, 12(1), 46. https://doi.org/10.3390/atmos12010046

Sadeghi, M., Chaston, T., Hanigan, I., de Dear, R., Santamouris, M., Jalaludin, B., & Morgan, G. G. (2022). The health benefits of greening strategies to cool urban environments – A heat health impact method. Building and Environment, 207, 108546. https://doi.org/10.1016/j.buildenv.2021.108546

Sagris, V., & Sepp, M. (2017). Landsat-8 TIRS Data for Assessing Urban Heat Island Effect and Its Impact on Human Health. IEEE Geoscience and Remote Sensing Letters, 14(12), 2385–2389. https://doi.org/10.1109/LGRS.2017.2765703

Sailor, D. J. (2014). Risks of summertime extreme thermal conditions in buildings as a result of climate change and exacerbation of urban heat islands. Building and Environment, 78, 81–88. https://doi.org/10.1016/j.buildenv.2014.04.012

Sailor, D. J., Baniassadi, A., O’Lenick, C., & Wilhelmi, O. V. (2019). The growing threat of heat disasters. Environmental Research Letters, 14(5).

Salata, F., Golasi, I., Petitti, D., de Lieto Vollaro, E., Coppi, M., & de Lieto Vollaro, A. (2017). Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustainable Cities and Society, 30, 79–96. https://doi.org/10.1016/j.scs.2017.01.006

Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207, 109482. https://doi.org/10.1016/j.enbuild.2019.109482

Santamouris, M., Paolini, R., Haddad, S., Synnefa, A., Garshasbi, S., Hatvani-Kovacs, G., Gobakis, K., Yenneti, K., Vasilakopoulou, K., Feng, J., Gao, K., Papangelis, G., Dandou, A., Methymaki, G., Portalakis, P., & Tombrou, M. (2020). Heat mitigation technologies can improve sustainability in cities. An holistic experimental and numerical impact assessment of urban overheating and related heat mitigation strategies on energy consumption, indoor comfort, vulnerability and heat-related mortality and morbidity in cities. Energy and Buildings, 217, 110002. https://doi.org/10.1016/j.enbuild.2020.110002

Santos Nouri, A., Charalampopoulos, I., & Matzarakis, A. (2018). Beyond Singular Climatic Variables—Identifying the Dynamics of Wholesome Thermo-Physiological Factors for Existing/Future Human Thermal Comfort during Hot Dry Mediterranean Summers. International Journal of Environmental Research and Public Health, 15(11), 2362. https://doi.org/10.3390/ijerph15112362

Savić, S., Marković, V., Ơećerov, I., Pavić, D., Arsenović, D., Miloơević, D., Dolinaj, D., Nagy, I., & Pantelić, M. (2018). Heat wave risk assessment and mapping in urban areas: Case study for a midsized Central European city, Novi Sad (Serbia). Natural Hazards, 91(3), 891–911. https://doi.org/10.1007/s11069-017-3160-4

Schatz, J., & Kucharik, C. J. (2015). Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environmental Research Letters, 10(9), 094024. https://doi.org/10.1088/1748-9326/10/9/094024

Schubert, S., & Grossman-Clarke, S. (2013). The Influence of green areas and roof albedos on air temperatures during Extreme Heat Events in Berlin, Germany. Meteorologische Zeitschrift, 22(2), 131–143. https://doi.org/10.1127/0941-2948/2013/0393

Scott, A. A., Waugh, D. W., & Zaitchik, B. F. (2018). Reduced Urban Heat Island intensity under warmer conditions. Environmental Research Letters, 13(6), 064003. https://doi.org/10.1088/1748-9326/aabd6c

Shafiei Shiva, J., Chandler, D. G., & Kunkel, K. E. (2019). Localized Changes in Heat Wave Properties Across the United States. Earth’s Future, 7(3), 300–319. https://doi.org/10.1029/2018EF001085

Sharma, R., Hooyberghs, H., Lauwaet, D., & De Ridder, K. (2019). Urban Heat Island and Future Climate Change—Implications for Delhi’s Heat. Journal of Urban Health, 96(2), 235–251. https://doi.org/10.1007/s11524-018-0322-y

Shen, L., Li, H., Guo, L., & He, B.-J. (2022). Thermal and energy benefits of rooftop photovoltaic panels in a semi-arid city during an extreme heatwave event. Energy and Buildings, 275, 112490. https://doi.org/10.1016/j.enbuild.2022.112490

Shreevastava, A., Prasanth, S., Ramamurthy, P., & Rao, P. S. C. (2021). Scale-dependent response of the urban heat island to the European heatwave of 2018. Environmental Research Letters, 16(10), 104021. https://doi.org/10.1088/1748-9326/ac25bb

Silva, R., Carvalho, A. C., Carvalho, D., & Rocha, A. (2021). Study of Urban Heat Islands Using Different Urban Canopy Models and Identification Methods. Atmosphere, 12(4), 521. https://doi.org/10.3390/atmos12040521

Silva, R., Carvalho, A. C., Pereira, S. C., Carvalho, D., & Rocha, A. (2022). Lisbon urban heat island in future urban and climate scenarios. Urban Climate, 44, 101218. https://doi.org/10.1016/j.uclim.2022.101218

Singh, V. K., Bhati, S., Mohan, M., Sahoo, N. R., & Dash, S. (2022). Numerical simulation of the impact of urban canopies and anthropogenic emissions on heat island effect in an industrial area: A case study of Angul-Talcher region in India. Atmospheric Research, 277, 106320. https://doi.org/10.1016/j.atmosres.2022.106320

Smid, M., Russo, S., Costa, A. C., Granell, C., & Pebesma, E. (2019). Ranking European capitals by exposure to heat waves and cold waves. Urban Climate, 27, 388–402. https://doi.org/10.1016/j.uclim.2018.12.010

Sodoudi, S., Shahmohamadi, P., Vollack, K., Cubasch, U., & Che-Ani, A. I. (2014). Mitigating the Urban Heat Island Effect in Megacity Tehran. Advances in Meteorology, 2014, 1–19. https://doi.org/10.1155/2014/547974

Steeneveld, G.-J., Klompmaker, J. O., Groen, R. J. A., & Holtslag, A. A. M. (2018). An urban climate assessment and management tool for combined heat and air quality judgements at neighbourhood scales. Resources, Conservation and Recycling, 132, 204–217. https://doi.org/10.1016/j.resconrec.2016.12.002

Stone, B., Hess, J. J., & Frumkin, H. (2010). Urban Form and Extreme Heat Events: Are Sprawling Cities More Vulnerable to Climate Change Than Compact Cities? Environmental Health Perspectives, 118(10), 1425–1428. https://doi.org/10.1289/ehp.0901879

Stone, B., Vargo, J., Liu, P., Habeeb, D., DeLucia, A., Trail, M., Hu, Y., & Russell, A. (2014). Avoided Heat-Related Mortality through Climate Adaptation Strategies in Three US Cities. PLoS ONE, 9(6), e100852. https://doi.org/10.1371/journal.pone.0100852

Sun, T., Grimmond, C. S. B., & Ni, G.-H. (2016). How do green roofs mitigate urban thermal stress under heat waves?: Green Roofs Reduce Urban Thermal Stress. Journal of Geophysical Research: Atmospheres, 121(10), 5320–5335. https://doi.org/10.1002/2016JD024873

Sun, T., Kotthaus, S., Li, D., Ward, H. C., Gao, Z., Ni, G.-H., & Grimmond, C. S. B. (2017). Attribution and mitigation of heat wave-induced urban heat storage change. Environmental Research Letters, 12(11), 114007. https://doi.org/10.1088/1748-9326/aa922a

Taha, H. (2017). Characterization of Urban Heat and Exacerbation: Development of a Heat Island Index for California. 21.

Taleghani, M., & Berardi, U. (2017). The effect of pavement characteristics on pedestrians’ thermal comfort in Toronto. 11.

Taleghani, M., Marshall, A., Fitton, R., & Swan, W. (2019). Renaturing a microclimate: The impact of greening a neighbourhood on indoor thermal comfort during a heatwave in Manchester, UK. Solar Energy, 182, 245–255. https://doi.org/10.1016/j.solener.2019.02.062

Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A. J., Li, F., & Chen, H. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), 75–84. https://doi.org/10.1007/s00484-009-0256-x

Taylor, J. (2015). Mapping the effects of urban heat island, housing, and age on excess heat-related mortality in London. Urban Climate, 12.

Tewari, M. (2019). Interaction of urban heat islands and heat waves under current and future climate conditions and their mitigation using green and cool roofs in New York City and Phoenix, Arizona. Environ. Res. Lett., 17.

Tian, L. (2021). Temporal characteristics of urban heat island and its response to heat waves and energy consumption in the mountainous Chongqing, China. Sustainable Cities and Society, 14.

Tian, P., Li, J., Cao, L., Pu, R., Wang, Z., Zhang, H., Chen, H., & Gong, H. (2021). Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure. Sustainable Cities and Society, 74, 103208. https://doi.org/10.1016/j.scs.2021.103208

Tomlinson, C. J., Chapman, L., Thornes, J. E., & Baker, C. J. (2012). Derivation of Birmingham’s summer surface urban heat island from MODIS satellite images: BIRMINGHAM’S SUMMER SURFACE URBAN HEAT ISLAND FROM SATELLITE IMAGES. International Journal of Climatology, 32(2), 214–224. https://doi.org/10.1002/joc.2261

Top, S., Miloơević, D., Caluwaerts, S., Hamdi, R., & Savić, S. (2020). Intra-urban differences of outdoor thermal comfort in Ghent on seasonal level and during record-breaking 2019 heat wave. Building and Environment, 185, 107103. https://doi.org/10.1016/j.buildenv.2020.107103

Tremeac, B. (2012). Influence of air conditioning management on heat island in Paris air street temperatures. Applied Energy, 9.

Trimmel, H., Weihs, P., Faroux, S., Formayer, H., Hamer, P., Hasel, K., Laimighofer, J., Leidinger, D., Masson, V., Nadeem, I., Oswald, S. M., Revesz, M., & Schoetter, R. (2021). Thermal conditions during heat waves of a mid-European metropolis under consideration of climate change, urban development scenarios and resilience measures for the mid‑21st century. Meteorologische Zeitschrift, 30(1), 9–32. https://doi.org/10.1127/metz/2019/0966

Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K., Peterson, P., & Evans, T. (2021). Global urban population exposure to extreme heat. Proceedings of the National Academy of Sciences, 118(41), e2024792118. https://doi.org/10.1073/pnas.2024792118

Ulpiani, G., Ranzi, G., & Santamouris, M. (2020). Experimental evidence of the multiple microclimatic impacts of bushfires in affected urban areas: The case of Sydney during the 2019/2020 Australian season. Environmental Research Communications, 2(6), 065005. https://doi.org/10.1088/2515-7620/ab9e1a

Van der Hoeven, F., & Wandl, A. (2018). Hotterdam: Mapping the social, morphological, and land-use dimensions of the Rotterdam urban heat island. Urbani Izziv, 29(1), 58–72. https://doi.org/10.5379/urbani-izziv-en-2018-29-01-001

Varentsov, M. I., Konstantinov, P. I., & Samsonov, T. E. (2017). Mesoscale modelling of the summer climate response of Moscow metropolitan area to urban expansion. IOP Conference Series: Earth and Environmental Science, 96, 012009. https://doi.org/10.1088/1755-1315/96/1/012009

Vargas, N., & Magaña, V. (2020). Warm Spells and Climate Risk to Human Health in the Mexico City Metropolitan Area. Weather, Climate, and Society, 12(3), 351–365. https://doi.org/10.1175/WCAS-D-19-0096.1

Venter, Z. S., Brousse, O., Esau, I., & Meier, F. (2020). Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sensing of Environment, 242, 111791. https://doi.org/10.1016/j.rse.2020.111791

Venter, Z. S., Chakraborty, T., & Lee, X. (2021). Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Science Advances, 7(22), eabb9569. https://doi.org/10.1126/sciadv.abb9569

Viguié, V., Lemonsu, A., Hallegatte, S., Beaulant, A.-L., Marchadier, C., Masson, V., Pigeon, G., & Salagnac, J.-L. (2020). Early adaptation to heat waves and future reduction of air-conditioning energy use in Paris. Environmental Research Letters, 15(7), 075006. https://doi.org/10.1088/1748-9326/ab6a24

Voelkel, J., Hellman, D., Sakuma, R., & Shandas, V. (2018). Assessing Vulnerability to Urban Heat: A Study of Disproportionate Heat Exposure and Access to Refuge by Socio-Demographic Status in Portland, Oregon. International Journal of Environmental Research and Public Health, 15(4), 640. https://doi.org/10.3390/ijerph15040640

Walther, C., & Olonscheck, M. (2016). Analysing heat exposure in two German cities by using meteorological data from both within and outside the urban area: Heat exposure in cities. Meteorological Applications, 23(3), 541–553. https://doi.org/10.1002/met.1577

Wang, C., Zhan, W., Liu, Z., Li, J., Li, L., Fu, P., Huang, F., Lai, J., Chen, J., Hong, F., & Jiang, S. (2020). Satellite-based mapping of the Universal Thermal Climate Index over the Yangtze River Delta urban agglomeration. Journal of Cleaner Production, 277, 123830. https://doi.org/10.1016/j.jclepro.2020.123830

Wang, F., & Wang, Y. (2021). Potential role of local contributions to record-breaking high-temperature event in Xiamen, China. Weather and Climate Extremes, 33, 100338. https://doi.org/10.1016/j.wace.2021.100338

Wang, J., Feng, J., Yan, Z., & Chen, Y. (2020). Future Risks of Unprecedented Compound Heat Waves Over Three Vast Urban Agglomerations in China. Earth’s Future, 8(12). https://doi.org/10.1029/2020EF001716

Wang, J., Yan, Z., Quan, X.-W., & Feng, J. (2017). Urban warming in the 2013 summer heat wave in eastern China. Climate Dynamics, 48(9–10), 3015–3033. https://doi.org/10.1007/s00382-016-3248-7

Wang, L., & Li, D. (2019). Modulation of the urban boundary‐layer heat budget by a heatwave. Quarterly Journal of the Royal Meteorological Society, 145(722), 1814–1831. https://doi.org/10.1002/qj.3526

Wang, L., & Li, D. (2021). Urban Heat Islands during Heat Waves: A Comparative Study between Boston and Phoenix. Journal of Applied Meteorology and Climatology, 60(5), 621–641. https://doi.org/10.1175/JAMC-D-20-0132.1

Wang, M., Yan, X., Liu, J., & Zhang, X. (2013). The contribution of urbanization to recent extreme heat events and a potential mitigation strategy in the Beijing–Tianjin–Hebei metropolitan area. Theoretical and Applied Climatology, 114(3–4), 407–416. https://doi.org/10.1007/s00704-013-0852-x

Wang, W., Zhou, W., Ng, E. Y. Y., & Xu, Y. (2016). Urban heat islands in Hong Kong: Statistical modeling and trend detection. Natural Hazards, 83(2), 885–907. https://doi.org/10.1007/s11069-016-2353-6

Wang, X., Li, H., & Sodoudi, S. (2022). The effectiveness of cool and green roofs in mitigating urban heat island and improving human thermal comfort. Building and Environment, 217, 109082. https://doi.org/10.1016/j.buildenv.2022.109082

Wang, X., Liu, H., Miao, S., Wu, Q., Zhang, N., & Qiao, F. (2020). Effectiveness of Urban Hydrological Processes in Mitigating Urban Heat Island and Human Thermal Stress During a Heat Wave Event in Nanjing, China. Journal of Geophysical Research: Atmospheres, 125(24). https://doi.org/10.1029/2020JD033275

Wang, Y., Ren, Y., Song, L., & Xiang, Y. (2021). Responses of extreme high temperatures to urbanization in the Beijing–Tianjin–Hebei urban agglomeration in the context of a changing climate. Meteorological Applications, 28(5). https://doi.org/10.1002/met.2024

Ward, K., Lauf, S., Kleinschmit, B., & Endlicher, W. (2016). Heat waves and urban heat islands in Europe: A review of relevant drivers. Science of The Total Environment, 569–570, 527–539. https://doi.org/10.1016/j.scitotenv.2016.06.119

Weber, N., Haase, D., & Franck, U. (2014). Zooming into temperature conditions in the city of Leipzig: How do urban built and green structures influence earth surface temperatures in the city? Science of The Total Environment, 496, 289–298. https://doi.org/10.1016/j.scitotenv.2014.06.144

Wei, C., Chen, W., Lu, Y., Blaschke, T., Peng, J., & Xue, D. (2021). Synergies between Urban Heat Island and Urban Heat Wave Effects in 9 Global Mega-Regions from 2003 to 2020. Remote Sensing, 14(1), 70. https://doi.org/10.3390/rs14010070

Wicki, A., Parlow, E., & Feigenwinter, C. (2018). Evaluation and Modeling of Urban Heat Island Intensity in Basel, Switzerland. Climate, 6(3), 55. https://doi.org/10.3390/cli6030055

Winguth, A. M. E., & Kelp, B. (2013). The Urban Heat Island of the North-Central Texas Region and Its Relation to the 2011 Severe Texas Drought. Journal of Applied Meteorology and Climatology, 52(11), 2418–2433. https://doi.org/10.1175/JAMC-D-12-0195.1

Wolf, T., & McGregor, G. (2013). The development of a heat wave vulnerability index for London, United Kingdom. Weather and Climate Extremes, 1, 59–68. https://doi.org/10.1016/j.wace.2013.07.004

Wong, K. V., Paddon, A., & Jimenez, A. (2013). Review of World Urban Heat Islands: Many Linked to Increased Mortality. Journal of Energy Resources Technology, 135(2), 022101. https://doi.org/10.1115/1.4023176

Wouters, H., De Ridder, K., Poelmans, L., Willems, P., Brouwers, J., Hosseinzadehtalaei, P., Tabari, H., Vanden Broucke, S., van Lipzig, N. P. M., & Demuzere, M. (2017). Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region: URBAN HEAT STRESS UNDER CLIMATE CHANGE. Geophysical Research Letters, 44(17), 8997–9007. https://doi.org/10.1002/2017GL074889

Wu, C.-D., Lung, S.-C. C., & Jan, J.-F. (2013). Development of a 3-D urbanization index using digital terrain models for surface urban heat island effects. ISPRS Journal of Photogrammetry and Remote Sensing, 81, 1–11. https://doi.org/10.1016/j.isprsjprs.2013.03.009

Wu, X., Wang, L., Yao, R., Luo, M., Wang, S., & Wang, L. (2020). Quantitatively evaluating the effect of urbanization on heat waves in China. Science of The Total Environment, 731, 138857. https://doi.org/10.1016/j.scitotenv.2020.138857

Xing, Y., & Jones, P. (2021). In-situ monitoring of energetic and hydrological performance of a semi-intensive green roof and a white roof during a heatwave event in the UK. Indoor and Built Environment, 30(1), 56–69. https://doi.org/10.1177/1420326X19887218

Yang, G., Yu, Z., JĂžrgensen, G., & Vejre, H. (2020). How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustainable Cities and Society, 53, 101932. https://doi.org/10.1016/j.scs.2019.101932

Zemtsov, S., Shartova, N., Varentsov, M., Konstantinov, P., Kidyaeva, V., Shchur, A., Timonin, S., & Grischchenko, M. (2020). Intraurban social risk and mortality patterns during extreme heat events: A case study of Moscow, 2010-2017. Health & Place, 66, 102429. https://doi.org/10.1016/j.healthplace.2020.102429

Zhang, D.-L., Shou, Y.-X., & Dickerson, R. R. (2009). Upstream urbanization exacerbates urban heat island effects. Geophysical Research Letters, 36(24), L24401. https://doi.org/10.1029/2009GL041082

Zhang, N., Chen, Y., Gao, H., & Luo, L. (2019). Influence of urban land cover data uncertainties on the numerical simulations of urbanization effects in the 2013 high-temperature episode in Eastern China. Theoretical and Applied Climatology, 138(3–4), 1715–1734. https://doi.org/10.1007/s00704-019-02926-5

Zhang, N., Chen, Y., Luo, L., & Wang, Y. (2017). Effectiveness of Different Urban Heat Island Mitigation Methods and Their Regional Impacts. Journal of Hydrometeorology, 18(11), 2991–3012. https://doi.org/10.1175/JHM-D-17-0049.1

Zhang, Y., & Ayyub, B. M. (2018). Urban Heat Projections in a Changing Climate: Washington, DC, Case Study. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 4(4), 04018032. https://doi.org/10.1061/AJRUA6.0000985

Zhang, Y., & Ayyub, B. M. (2020). Projecting heat waves temporally and spatially for local adaptations in a changing climate: Washington D.C. as a case study. Natural Hazards, 103(1), 731–750. https://doi.org/10.1007/s11069-020-04008-6

Zhao, L., Lee, X., Smith, R. B., & Oleson, K. (2014). Strong contributions of local background climate to urban heat islands. Nature, 511(7508), 216–219. https://doi.org/10.1038/nature13462

Zhao, L., Oppenheimer, M., Zhu, Q., Baldwin, J. W., Ebi, K. L., Bou-Zeid, E., Guan, K., & Liu, X. (2018). Interactions between urban heat islands and heat waves. Environmental Research Letters, 13(3), 034003. https://doi.org/10.1088/1748-9326/aa9f73

Zheng, Z., Xu, G., Wang, Y., Li, Q., & Li, J. (2020). Characteristics and main influence factors of heat waves in Beijing–Tianjin–Shijiazhuang cities of northern China in recent 50 years. Atmospheric Science Letters, 21(11). https://doi.org/10.1002/asl.1001

Zhong, S., Qian, Y., Zhao, C., Leung, R., Wang, H., Yang, B., Fan, J., Yan, H., Yang, X.-Q., & Liu, D. (2017). Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China. Atmospheric Chemistry and Physics, 17(8), 5439–5457. https://doi.org/10.5194/acp-17-5439-2017

Zhou, X., Carmeliet, J., Sulzer, M., & Derome, D. (2020). Energy-efficient mitigation measures for improving indoor thermal comfort during heat waves. Applied Energy, 278, 115620. https://doi.org/10.1016/j.apenergy.2020.115620

Zhou, Y., & Shepherd, J. M. (2010). Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies. Natural Hazards, 52(3), 639–668. https://doi.org/10.1007/s11069-009-9406-z

Zhu, L., Sun, F., & Li, T. (2022). Simulations of a Persistent Heat Wave Event in Missouri in Summer 2012 Using a High-Resolution WRF Model. Journal of Meteorological Research, 36(4), 631–642. https://doi.org/10.1007/s13351-022-2039-9

Zhu, S., Liu, Y., Hua, J., Zhang, G., Zhou, Y., & Xiang, J. (2018). Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data. Chinese Geographical Science, 28(5), 744–757. https://doi.org/10.1007/s11769-018-0989-8

Zong, L., Liu, S., Yang, Y., Ren, G., Yu, M., Zhang, Y., & Li, Y. (2021). Synergistic Influence of Local Climate Zones and Wind Speeds on the Urban Heat Island and Heat Waves in the Megacity of Beijing, China. Frontiers in Earth Science, 9, 673786. https://doi.org/10.3389/feart.2021.673786

Zong, L., Yang, Y., Xia, H., Gao, M., Sun, Z., Zheng, Z., Li, X., Ning, G., Li, Y., & Lolli, S. (2022). Joint occurrence of heatwaves and ozone pollution and increased health risks in Beijing, China: Role of synoptic weather pattern and urbanization. Atmospheric Chemistry and Physics, 22(10), 6523–6538. https://doi.org/10.5194/acp-22-6523-2022

Zou, Z., Yan, C., Yu, L., Jiang, X., Ding, J., Qin, L., Wang, B., & Qiu, G. (2021). Impacts of land use/ land cover types on interactions between urban heat island effects and heat waves. Building and Environment, 204, 108138. https://doi.org/10.1016/j.buildenv.2021.108138